Epinephrine Activation of the β2-Adrenoceptor Is Required for IL-13-Induced Mucin Production in Human Bronchial Epithelial Cells
نویسندگان
چکیده
Mucus hypersecretion by airway epithelium is a hallmark of inflammation in allergic asthma and results in airway narrowing and obstruction. Others have shown that administration a TH2 cytokine, IL-13 is sufficient to cause mucus hypersecretion in vivo and in vitro. Asthma therapy often utilizes β2-adrenoceptor (β2AR) agonists, which are effective acutely as bronchodilators, however chronic use may lead to a worsening of asthma symptoms. In this study, we asked whether β2AR signaling in normal human airway epithelial (NHBE) cells affected mucin production in response to IL-13. This cytokine markedly increased mucin production, but only in the presence of epinephrine. Mucin production was blocked by ICI-118,551, a preferential β2AR antagonist, but not by CGP-20712A, a preferential β1AR antagonist. Constitutive β2AR activity was not sufficient for IL-13 induced mucin production and β-agonist-induced signaling is required. A clinically important long-acting β-agonist, formoterol, was as effective as epinephrine in potentiating IL-13 induced MUC5AC transcription. IL-13 induced mucin production in the presence of epinephrine was significantly reduced by treatment with selective inhibitors of ERK1/2 (FR180204), p38 (SB203580) and JNK (SP600125). Replacement of epinephrine with forskolin + IBMX resulted in a marked increase in mucin production in NHBE cells in response to IL-13, and treatment with the inhibitory cAMP analogue Rp-cAMPS decreased mucin levels induced by epinephrine + IL-13. Our findings suggest that β2AR signaling is required for mucin production in response to IL-13, and that mitogen activated protein kinases and cAMP are necessary for this effect. These data lend support to the notion that β2AR-agonists may contribute to asthma exacerbations by increasing mucin production via activation of β2ARs on epithelial cells.
منابع مشابه
Characterising the Mechanism of Airway Smooth Muscle β2 Adrenoceptor Desensitization by Rhinovirus Infected Bronchial Epithelial Cells
Rhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelia...
متن کاملBeta-adrenoceptor-mediated responsiveness of human internal mammary artery
The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, pre-operative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since β-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate th...
متن کاملInduction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.
In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 m...
متن کاملEffects of Scutellarin on MUC5AC Mucin Production Induced by Human Neutrophil Elastase or Interleukin 13 on Airway Epithelial Cells
Scutellarin is a flavonoid extracted from a traditional Chinese herb, Erigeron breviscapus. The present study investigated the effect of scutellarin on MUC5AC mucin production and the possible mechanism. Human bronchial epithelial 16 (HBE16) cells were pretreated with scutellarin for 60 min, and then exposed to human neutrophil elastase (HNE) or interleukin (IL)-13 for 12 hr. RT-PCR and ELISA w...
متن کاملIL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production.
Overproduction of mucus is a central feature of asthma. The cytokine, IL-13, epidermal growth factor receptor (EGFR), and transcription factor, FOXA2, have each been implicated in mucus production, but the mechanistic relationships between these molecules are not yet well understood. To address this, we established a primary normal human bronchial epithelial cell culture system with IL-13-induc...
متن کامل